Proof of a positivity conjecture on Schur functions
نویسندگان
چکیده
In the study of Zeilberger’s conjecture on an integer sequence related to the Catalan numbers, Lassalle proposed the following conjecture. Let (t)n denote the rising factorial, and let ΛR denote the algebra of symmetric functions with real coefficients. If φ is the homomorphism from ΛR to R defined by φ(hn) = 1/((t)nn!) for some t > 0, then for any Schur function sλ, the value φ(sλ) is positive. In this paper, we provide an affirmative answer to Lassalle’s conjecture by using the Laguerre–Pólya-Schur theory of multiplier sequences. AMS Classification 2010: Primary 05E05; Secondary 26C10.
منابع مشابه
2 00 5 Schur Positivity and Schur Log - Concavity
We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give an intriguing log-concavity property of Schur functions. 1. Schur positivity conjectures The ring of...
متن کاملPositivity And
We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give an intriguing log-concavity property of Schur functions. 1. Schur positivity conjectures The ring of...
متن کاملA filtration of the symmetric function space and a refinement of the Macdonald positivity conjecture
Let Λ be the space of symmetric functions and Vk be the subspace spanned by the modified Schur functions {Sλ[X/(1− t)]}λ1≤k. We introduce a new family of symmetric polynomials, {A λ [X ; t]}λ1≤k, constructed from sums of tableaux using the charge statistic. We conjecture that the polynomials A (k) λ [X ; t] form a basis for Vk and that the Macdonald polynomials indexed by partitions bounded by ...
متن کاملTableau Atoms and a New Macdonald Positivity Conjecture
Let 3 be the space of symmetric functions, and let Vk be the subspace spanned by the modified Schur functions {Sλ[X/(1−t)]}λ1≤k . We introduce a new family of symmetric polynomials, {A λ [X; t]}λ1≤k , constructed from sums of tableaux using the charge statistic. We conjecture that the polynomials A λ [X; t] form a basis for Vk and that the Macdonald polynomials indexed by partitions whose first...
متن کامل. C O ] 1 4 Se p 20 05 SCHUR POSITIVITY AND SCHUR LOG - CONCAVITY
We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. We include an alternative derivation of this result directly from Haiman’s work on Schur positive immanants. Our results imply an intriguing log-concavity propert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 120 شماره
صفحات -
تاریخ انتشار 2013